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The aquatic family Hydrobndae (Sttimpson, 1865) comprises > 900 described extant species, Bl IO T3l o around simulated species traits
occurring mainly in springs and lakes of the northern hemisphere (Fig. 2)°. Their typically for drift-hke E
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Fig. 3: (a) Examples of shell diversity. (b) Diversification rates.

We evaluated the performance using simulated The benchmarking results suggest a generally good

performance of proSDS 1n both real and simulated data,

data and a reference database for microgastropods.
with high rates ol correct species classification with fair

Q : probabilittes over a wide range of ntra/interspecific
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Fig. 6: Performance of proSDS exemplified on two micrograstropod genera. Ratio of correct
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Fig. 7: Robustness and limits of proSDS inferred by regression analyses. (a) Decrease m explaining correct

Fig. 4: Workitlow of the probabilistic species-delimitation system. Supervised machine classification ratio upon omitting explanatory simulation features. (b) Decrease of correct classification power
learning derives rules for classifying specimens mto species utilizing a taxonomist's curated with mncreasing intraspecific variation 1s mitigated by morphological and ecological traits. (c) Rapid trait
reference dataset of genetic, morphological, and ecological traits. Querying the species divergence limits performance.

identity of an unknown specimen by applying the classification rules results in a probability Our simulations comprise simple evolutionary scenarios. We will benchmark proSDS against
for belonging to a species not mcluded 1n the reference dataset (novel species’). Next, for () convergent evolution’ and (i) speciation with gene flow and trait evolution along the
each species mn the reference dataset a probability for the query specimen to be a member of resulting phylogenetic networks’; scenarios identified in our previous Taxon-Omics meetings
that species is obtained (known species’). In case of throughout low probabilities per as major obstacles to species delimitation.

reference species, more data need to be collected (‘undetermined species'). In the long run, our approach mught assist scientists m making taxonomic decisions by
estimating the probability for a query specimen to belong to a known or novel species.
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